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This paper engages current thinking about the links between students' early experience with 
number properties and their future understandings of algebra. It reports on a study of 
students' understandings and explanations of commutativity. Central to the analysis are both 
the forms of representation students draw upon and the language they employ to make their 
understandings explicit. The investigation reveals that despite the rhetoric of educators and 
the intention of curriculum developers, student learning continues to remain at the 
procedural level, constraining rather than enabling algebraic reasoning. 

"The power of mathematics", according to Deborah Ball (1993), "lies in part in its 
capacity to represent important relationships and patterns in ways that enable the knower to 
generalise, abstract, analyse, understand" (p. 163). Students who are successful in 
mathematics have moved beyond definitions, concepts and skills to an engagement with 
the underlying structure and regularities of mathematical operations, and are able to 
express their insights about mathematical relationships. The capaci!y to generalise, to 
construct ways of representation, and to offer justifying arguments and explanations, is a 
defining feature of a sophisticated mathematical experience. 

Algebraic thinking relies upon insightful expression of the nuances between numbers 
and operations; these very same principles that govern symbolic representation and 
structure in algebra build on students' extensive experience with numbers and their 
properties. Indeed, as Schifter (1999) argues, implicit to the strategising efforts which 
students employ for calculating and for solving problems is an engagement with algebraic 
reasoning. For example, most students make implicit use of algebraic reasoning when they 
change the order of the numbers in their addition calculation. However, although students 
draw on the fundamental properties of addition, most are not aware of the underlying 
structure and properties of commutativity and hence are not able to make connections 
between the structure of algebra and the structural properties of systems of numbers 
(Carpenter, Franke, &, Levi, in press). Kaput (1999) and Schifter (1999) have both argued 
that many students fail to recognise that· the preliminary ideas of algebra are merely the 
generalisation of arithmetic. Recognition of this link is crucial for "breaching the cognitive 
gap" (Warren & English, 2000, p.624) and takes the student beyond competence with the 
traditional procedural missing-value problem into some of the most important algebraic 
understandings which have to do with equivalence and the transformation of variables. 

Current thinking among mathematics educators and curriculum developers shifts the 
mathematical experiences of students from a procedural focus to active engagement with 
mathematical ideas, promoting a vision of teaching and learning opportunities which 
encourage reflection and argumentation (Yackel, 2001). Integral to our research are those 
forms of argumentation central to students' understanding of commutativity. We asked: 
What understandings do students have about the commutative property in relation to 
addition, subtraction and multiplication? Our theoretical framework is derived from 
Krummheuer's (1995) standpoint on argumentation. Krummheuer offers a reflexive 
perspective on learning, maintaining that a student's active involvement in a process of 
argumentation influences learning, and in turn, the student's process of argumentation is 
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coursed through his or her cognitive capabilities. Through exploration of their own. and 
other students' conjectures, students who engage in forms of mathematical argument 
evolve an understanding of what constitutes an appropriate explanation or justification. 
More importantly, they are better positioned to make explicit connections between 
arithmetic experiences and algebraic reasoning. 

Research Study 

This paper reports on data drawn from New Zealand's National Education Monitoring 
Project (NEMP). The latest available data, involving 3000 Year 4 (ages 8-9) and Year 8 
(ages 12-13) students, assessed content knowledge and process skills in mathematics 
(Flockton & Crooks, 1997). The reported project focuses on students' knowledge of and 
articulation of ideas about commutativity . 

The researchers viewed videotapes of 50 Year 4 students and 50 Year 8 students 
randomly selected from the NEMP bank of student responses. They investigated and 
analysed the differences in students' ability to recognise the commutative law and in their 
capacity to explain this law in everyday language. The videotapes provided a means to 
paint a national portrait of mathematics understandings presented verbally by students-the 
plain talk, the tangled persuasion and the resounding eloquence--at two distinct year 
levels. But the videos did more than this: they provided a visual image rich in descriptive 
power which allowed us to capture the processes involved in the demonstrated rationales 
offered by the students. 

Each student was introduced to the assessment task by the interviewer's words: "Let's 
imagine that someone in your class needs some help with maths and that you are going to 
try to explain the answers. I'll ask the questions and you try to explain the answers. You 
will need to say more than 'yes' or 'no' because you want them to understand. Use the 
cubes to help show what you mean." The students were then asked the following questions: 

• Is 4 plus 3 the same as 3 plus 4? 
• What about 4 minus 3 and 3 minus 4? Are they are same? 
• Does 2 times 5 give the same answer as 5 times 2? 

Numeric representations on cards were placed on the table for each question. For example, 
the card 3 + 4 and the card 4 + 3 were both presented to the student for question one. 

The researchers transcribed half of the tapes each then carried out a reliability check of 
the transcriptions of the other fifty. In this way both researchers viewed all 100 responses. 
Initial codes, listing all explanations and/or demonstrations which were explicit contrasts 
from other criteria, were refined as the researchers re-applied the system to the actual study 
tapes. The final choice of the best-fitting category for any response was by mutual 
agreement, arrived at through re-viewing the tape segment andlor further discussion. 

Results and Discussion 

The focus here on how students articulate their conjectures goes beyond a simplistic 
interest in communication engagement. If students are learning with understanding, they 
are engaged in justification. It was found that students can engage productively in 
justifying conjectures, yet many struggled to appeal to a model or use a language with the 
rigour and precision required to convey meaningfulleaming. 
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A Question of Addition 

All but two students in the study volunteered that 4+3 is the same as 3+4. The 
arguments of these dissenting students (both from Y4) were based on differences that the 
students observed in the placement of the numbers on the two cards: 

No, this one here has 4+3, and this one here has 3+4. 

All other students responded positively and were able to offer some explanation in 
support, or were able to justify by example. Responses were coded according to the 
following indicators: 

• 1 a The numbers are' switched around' . 
• 1 b Both sides add to seven or the same amount 
• 1 c The same numbers and they both add to 7 

(15 Y4 : 13 Y8) 
(11 Y4 : 11 Y8) 

or to the same amount. (19 Y4 : 25 Y8) 
• Id Other. (5 Y4: 1 Y8) 
Explanations for la included the responses of students who either (i) switched around a 

model of one set of three and four cubes to represent the second card, or (ii) demonstrated 
the equivalence of the two spatial arrangements of cubes that modelled each respective 
card. 

Yes, you have 3 cubes and 4 cubes and it's just the same as if you have these cubes [refers to the 4 
cube set] and put 4 cubes in front of the 3. (Y8) 

Number switches provide a powerful visual image to the student. Schifter's (1999) 
research class coined the expression "turn-around" to convey the numeral switch in 
number. In the current study "turn-around" came in many other linguistic guises: "going 
that way, and the other is going the other way", "switched around", "put backwards", "in a 
different way", "the opposite way", "changed around", "upside down", "swapped around" 
and "changed sides". 

It is possible within la coding that some students' justifications were based on an 
appeal to authority, involving the repetition of someone else's claim rather than on any 
meaningful understanding of commutativity. We make this suggestion knowing that a 
significant proportion (21 %) of students justified the commutative property for subtraction 
on the basis of the same 'number switching' argument. 

Likewise, it was unclear as to whether all students who provided explanations of type 
1 b were aware of commutative law. It is possible that in cases where students appeared to 
count each conjoined set separately, that the equivalence conjecture was backed by a 
similar warrant as might be applied to the equation 3+6 = 2+7. 

Yes, because they make the right answer. If you get 4 cubes and add 3 onto them they make 7 
[counts all the cubes]. And if you get 3 cubes and add 4 onto them, that makes 7 [counts all the 
cubes]. (Y8) 

I've put the equals sign in both of them and they add up to the same one. (Y4) 

The videos offered a wealth of information concerning differential levels of confidence 
and verbosity between Year 4 and Year 8 students. Implicit to the Year 4 students' 
characteristic long pauses and inflections in tone was an appeal for reassurance and 
affirmation. Their responses were often marked by unsophisticated and imprecise language: 
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Um, yes, it is because that one [points to the card 4+3] is going that way and the other one is going 
the other way. So they both equal the same number. That equals 7 [points to 4+3] and so does that 
cos I counted up [counted up 3 and 4 cubes]. (Y4) 

In comparison, a Year 8 student demonstrated the equality of the two addition statements in 
relation to the equal sets of cubes: 

Yes, because they both equal 7. 4 plus 3 is seven [joins 4 cubes and 3 cubes]. And that doesn't 
matter if you have them the other way [switches the cube sets] because they'll still be the same 
amount of cubes. 

Analysis of the 1 c coding responses revealed that more Year 8 students supported the 
notion of 'switching' by providing an additional warrant of a form similar in intent to: "you 
get the same answer", or "they both equal 7". 

Well, it can be because 4+3, you just get 4 cubes and 3 cubes and then you just swap around. And 
you just get the same answer because that there, you've got 3 plus 4 and [swaps the order of the 
cubes], you've got 4 plus 3. (YS) 

One student attempted to take the argument to a higher level of generalisation. However, in 
essence while wanting to provide an argument that is general, the student falls short, in that 
her argument simply restates the conjecture in slightly different words: 

Yes they are the same because they've got the same numbers. And in pluses it doesn't really matter 
how you have the numbers. They'll equal the same ifthe numbers are the same. (Y8) 

While answering the given question was not conditional on supplying a generalisation, it 
was surprising, given the centrality of commutativity to the development of early number 
understanding, that generalised statements were not offered by more students. When we 
consider alongside this observation that some Year 4 students could not provide a model or 
explanation to support their conjecture, we are led to wonder if discussions about 
properties of numbers and operations have been commonplace in the New Zealand 
classroom. 

A Question of Subtraction 

Coding indicators for subtraction: 
• 2a Yes they are the same. (14 Y4 : 3 Y8) 
• 2b 4-3=4, and 3-4=3 (6 Y4 : 0 Y8) 
• 2c Double model (2 Y 4 : 10 Y8) 
• 2d Correct modelling & not explained; or no model & explained (9 Y 4 : 5 Y8) 
• 2e Comparison (1 Y4 : 2 Y8) 
• 2f Correct modelling and uses 'minus' or 'you can't' (18 Y4 : 30 Y8) 
Students in the 2a category backed their argument by making reference to the identical 

numbers on the two cards. A few students appeared to be unsure of how to read a 
subtraction problem, claiming that the problems would have to be the same because on the 
second card the numbers were "Just swapped round". 
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Yes, you've got 4 there and 4 there. And if you take away. And you get the same answer. (Y4) 

Yes, they both have the same, but swapped around and equal to one because, like, if you had 4 
minus 3 it would be 4 blocks and take away 3 and you've only got one left. And 3 minus 4 is just the 
same as 4 minus 3 but it's round the other way. You've got 4 blocks and you just take away 3 blocks 
again. (Y8) 
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Some students provided a further warrant by arguing "It's just like the other one" [the 
addition problem]. 

They're the same as well. Except they're minus so they both equal the same number. Exactly like the 
other one but they're minus. And they're the same, by two 3' s and the same by two 4' s. (Y 4) 

Analysis revealed that 13 of the 38 students, who initially supported the conjecture that 4-3 
was the same as 3-4, altered their response as they proceeded with an explanation or 
demonstration with the cubes. Proportionately more Year 8 students revised their 
assessment of commutativity for subtraction when prompted to provide ajustification. 

A consideration of the responses of the students who disagreed with the conjecture that 
3-4 was the same as 4-3 (code 2b) raised an important issue concerning forms of 
representation which students gave to the problems. A large number of students (both Year 
4 and 8) modelled, with the cubes, the numbers on the cards and then became confused 
about what exactly to subtract. 

You've got 4 then you take away 3 and that just leaves 4 [i.e., 0000 - 000 = ODD]. And then 
you have 3 and you take away 4, you'd leave yourself3 [i.e., 000 - 0000 = 000]. (Y4) 

Others (code 2c) who modelled the numbers on the card [4-3], self-corrected by taking 
away 3 cubes twice to offer '1' as the answer. The frequency of these mis-representations 
suggests that modelling basic subtraction problems was not firmly established in the 
students' experiences. The inability to directly model such elemeptary problems with 
concrete materials will invariably hinder the student's propensity for visualisation and 
abstraction deemed necessary for algebraic thinking. In earlier studies, children's 
reluctance or inability to translate between the written and concrete representations using a 
model depicting 'separation' led Hughes (1986) to conclude that "some of the children's 
responses revealed a major gap between their concrete and written understanding" (p. 
132)-a conclusion that appears to be valid even today. 

Not surprisingly, given no context for the subtraction problem, very few students chose 
to use a compare model to demonstrate their conjecture. Included here is one of the few 
demonstrated comparison examples, recorded in the 2e category: 

3, you have to.put one on. That equals 4 [constructs a column of 3 cubes alongside a column of 4 
cubes]. So that's one left over. And if you do 3-4, 4 doesn't go and if you go, count backwards, 
minus 1 from zero, so it's minus one. (YS) 

One Year 4 student couched her compare explanation within a context meaningful to her: 

Yes, well pretend you've got 4 apples and you had 3 visitors come and one of them was you. You 
would give, um, and you had, you would give the person one apple each. And then 4 take away 3 
would be 1. Because there's not enough for it to equal. See, there's a person and there's an apple 
and that's a person and there's an apple and you can see that's really 2 apples going into one more 
person. And you gave them the apples. And that's for you. And you've got one more apple left. 

For those students (2f) who provided a clear demonstration of their understanding of 
the subtraction process, most stated that 4 minus three "can't be done"; sometimes offering 
an additional warrant that there were not enough cubes to take away: 

You can't do it because 4 is higher than 3. (Y4) 

When confronted with a numerical situation that could not be contained within their 
number experience, some students volunteered that the answer to 3-4 would be zero or 
nothing: 
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You can't have 3 and take away 4 cos there's only one there. Take away 3 there. Take away 3. 
Nothing. (Y 4) 

Other students offered some explanation related to a negative answer for 4-3. 

[For 3-4] Imagine you had 3 apples and somebody took, somebody came one night and took 4 out, 
out of3. And then you would have, you'd have those 3 taken, and you'd have no more left. And that 
would be minus one. (Y 4) 

... but if you had 3 cubes and tried to take away 4 you would take away all your 3 and you won't 
have another one to give away so you would be minus 1. (Y8) 

A Question of Multiplication 

Coding indicators for Multiplication: 
• 3a Models numbers on cards and says '1'. (9 Y4 : 2 Y8) 
• 3b Models numbers on cards and says' 10'. (5 Y 4 : 2 Y8) 
• 3c Known fact with no demonstration. (2 Y 4 : 0 Y8) 
• 3d Models correctly one set only, with explanation. (8 Y 4 : 7 Y8) 
• 3e Forms 2 sets of 5 cubes then rearranges to form 5 sets of 2. (11 Y 4 : 28 Y8) 
• 3f Forms 2 unique sets; one representing 5x2, the other 2x5. (8 Y4 : 6 Y8) 
• 3g Other, including reverse modelling (7 Y 4 : 5 Y8) 

Demonstrations of the 3a kind based on a direct model of the numbers on the given 
cards do not constitute a legitimate representation of the commutativity of multiplication. 

[Pointing to the card 2 x 5] You've got 2 on this one and you add 5 and you get 7. [Referring to the 
card 5x2] You've got 5 and you just add on 2 and it equals the same. (Y4) 

Likewise, students' warrants categorised under 3b ignore the array structure of 
multiplication. Instead, students use a known fact to justify the 'sameness' of 2 x 5 and 
5x2. 

I: You've made a set of 5 and a set of2. [Y 4 modelling the cubes 00000 00] 

S: [reaffIrming by counting] 1,2,3,4,5. And a set of2. 

I: How much does it come to? 

S: 10. The same as that one [pointing to the card 2x5]. 10. 

Analysis revealed that 28% of Year 4 students recited a known fact and modelled 
unconventionally. 8% of Year 8 students began by modelling the numbers on the cards 
then set aside this initial representation and started afresh: 

They're the same. It's like the other one [referring to addition problem; models the numbers 2, 5 
00 00000]. There's 2 5s 00000 00000 [changing arrangement of cubes]. There's 5 plus 5 
there. Two 5s equal IO.Then 5 pairs of2 [00 00 00 00 00] So 2,4,6,8,10. Same thing. 
(Y8) 

Student responses denoted as 3c begin with an appeal to authority and when pushed for 
further clarification are unable (or unwilling) to provide a model, offering instead an 
approach incorporating repeated addition: 
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Yes it will [equal the same]. The order is just changed around. You get charts. If you don't know the 
times table. You get charts to name them. It's just 5 times 2 is 10. All you're doing is just doubling, 
tripling, 5 times 2 is 10. It's just the same as plus. You're going up 2 or three numbers [pause]. 5 
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ones are 5 and you just add on another 5 and that makes 10. You go up 5 each time. 5 twos are 10. 
Just the same, It's like 2 times tables. You use the 2 and you go up 5 times. (Y8) 

Additive reasoning develops intuitively from everyday additive encounters (Lamon, 
1995; Simon & Blume, 1994). Multiplicative reasoning, on the other hand, is a more 
elusive development which requires progressive pedagogical exposure to multiplicative 
structures. Many researchers (e.g., Sowder et aI., 1998; Thompson & Thompson, 1994) 
have noted the conceptual difficulties associated with multiplicative reasoning but insist 
that such experience is important not only for students' conceptual understanding of 
rational numbers but crucial to the development of the ideas fundamental to algebra and 
calculus. Whilst additive thinking, in contrast, is "a familiar and comfortable means of 
solving multiplicative problems" (Jacob & Willis, 2001, p. 306), it is also limiting. 

In the following examples a progressive development from additive reasoning and 
tending towards multiplicative thinking is made explicit: 

Yes [they are the same] because 2 5s [00000 00000] is the same as 5 times 2 because you put 
2 [00], 2[00,] 2[00], 2[00], 2[00 ]. It's 10. Then either one is the same. 10. (Y4) 

You get 5 times 2 is 10. And 2 times 5 is [counting out 10, 0000000000 ] So that's 2 times 5. 
This is a hard one, 2 times 5 is 10. So 5 times 2 is 10 as well ... .if you had 5 times 1, it would just be 
5. So 5 times 2 is adding another one on for every one. That's 10. That's the same. (Y4) 

Well, you've got...you start off with the 5 times 2. You'd need to do 2 sets of 5. So you'd have 
[00000 00000]. 5 sets of2 with other blocks [00 00 00 00 00]. Once I'd done that I'd 
say, OK, count how many blocks there are. And they'd say it's the same because once again, it's the 
same numbers but just a different method of showing it. And what it is ... you've got 2 sets of 5 that 
add up to 10 and 5 sets of2. And you're doing the same thing except that you're doing 2 of these 
[pointing to the card 2x5] and 5 ofthese [pointing to the card 5x2]. (Y8) 

Responses classified in the 2f category either exhibited confused thinking or reversed 
modelling. Imaging by reversal appeared to make a good deal of sense to some students: 

Yes, cos you've got going 2x5 [00 00 DO 00 00]. It's got, you've got 2, and you've got 
times 5. It's like. Urn, it's the same cos you've got to go 2 times 5. You've got all these [pointing to 
cubes] and you just, so you've got 2, you've got 5 lots of2, so you can either add them together or if 
you know your tables you can go 2x5, and it's the same with the other one. It's just, you're going, 
you've got 5 lots of2 [00000 00000]. 

It is our contention that few of the research participants exhibited sophisticated 
multiplicative reasoning and commutative understanding. A student with multiplicative 
thinking and commutative understanding operates at a higher level of abstraction and 
would probably reveal that thinking by implicitly reorganising the array structure. Hiebert 
and Behr (1988) argue that, whereas addition operates on singleton units, multiplication 
deals with composites. An array enables the student to see, simultaneously, the singleton 
units and the aggregation of those units. None of the sampled students appeared to 
construct and coordinate composite units through an array-visualising the array in two 
unique orientations--that would be suggestive of reasoning multiplicatively and thinking 
in commutative terms. 

Conclusion 

Justification is central to mathematics. In order to make sense of and genuinely 
understand mathematical concepts and move beyond solutions at the surface procedural 
level students need to be able to explain and justify> and convince themselves and others. 
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Reasoning through argumentation works on many levels of sophistication from appeal to 
authority, justifying by example, analogising and generalising. In the process of learning 
those forms of argumentation which are persuasive and useful to the problem in hand 
students acquire a firm foundation for the learning of algebra. 

Descriptions from this study indicate that, despite the intent of curriculum developers, 
many students have learned arithmetic in a way which is not conducive to the enrichment 
of structural understanding. We maintain that the focus on procedural learnin~ which 
persists has little flow-on effects for the development of algebraic reasoning. To foster this 
development we suggest that students need more productive modes of instruction than are 
currently in operation. Forms of conjectorising and generalising about the properties of 
numbers need to be encouraged. Students need opportunities to make explicit their 
understanding of why number properties such as commutativity 'hold good'. And they need 
to be able to apply these procedures in a variety of contexts. In subscribing to these 
approaches teachers can ensure that students willleam to make the connections between 
the students' own understandings of number properties and the study of algebra. 

Acknowledgment 

The authors wish to acknowledge that this project was funded through a Probe Study 
contract. The opinions expressed in this paper are those of the authors and do not 
necessarily reflect those of NE MP. 

References 
Ball, D. L. (1993). Halves, pieces, and twoths: Constructing and using representational contexts in teaching 

fractions. In T. Carpenter, E. Fennema, & T. Romberg (Eds.), Rational numbers: An integration of 
research (pp.157-195). New Jersey: Lawrence Erlbaum Associates. 

Carpenter, T., Franke, M., & Levi, L. (In press). Thinking mathematically: Integrating algebra and 
arithmetic in the elementary school. Portsmouth, NH: Heinemann. 

Flockton, L., & Crooks, T. (1997). Mathematics assessment results 1997: National Education Monitoring 
Report 9. Dunedin: University of Otago, Educational Assessment Research Unit. 

Hiebert, J., & Behr, M. (1988). Introduction: Capturing the major themes. In J. Hiebert & M. Behr (Eds.), 
Number concepts and operations in the middle grades (pp. 1-18). Reston, V A: National Council of 
Mathematics Teachers. 

Hughes, M. (1986). Children and number. Oxford: Blackwell. 
Jacob, L., & Willis, S. (2001). Recognising the difference between additive and multiplicative thinking in 

young children. In J. Bobis & B. Perry, & M. Mitchelmore (Eds.), Numeracy and beyond (Proceedings 
of the 24th annual conference of the Mathematics Education Research Group of Australasia, Sydney, pp. 
306-313). Sydney: MERGA. 

Kaput, J. (1999). Teaching and learning a new algebra. In E. Fennema & T. Romberg (Eds.), Mathematics 
classrooms that promote understanding (pp. 133-155). Mahwah: Lawrence Erlbaum Associates. 

Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The 
emergence of mathematical meaning (pp. 229-269). New Jersey: Lawrence Erlbaum Associates. 

Lamon, S. (1995). Ratio and proportion: Elementary didactical phenomenology. In J. Sowder & B. 
Schappelle (Eds.), Providing a foundation for teaching mathematics in the middle grades (pp.167-198). 
Albany, NY: SUNY Press. 

Schifter, D. (1999). Reasoning about algebra: Early algebraic thinking in grades K-6. In L. Stiff & F. Curcio 
(Eds.), Developing mathematical reasoning in grades K-12 (pp. 62-81). Reston, VA: NCTM. 

Simon, M., & Blume, G. (1994). The troublesome idea of 'ratio': Mathematical modeling as a component of 
understanding ratio-as-measure: A study of prospective elementary teachers. Journal of Mathematical 
Behavior, 13, 183-197. 

98 



Swaps and Switches: Students' Understandings ofCommutativity 

Sowder, J., Annstrong, B., Lamon, S., Simon, M., Sowder, L. & Thompson, A. (1998). Educating teachers to 
teach mUltiplicative structures in the middle grades. Journal of Mathematics Teacher Education, 1, 127-
155. 

Thompson, P. W., & Thompson, A. G. (1994). Talking about rates conceptually~ Part I: A teacher's struggle. 
Journalfor Research in Mathematics Education, 25, 279-303. 

Warren, E., & English, L. (2000). Primary school children's knowledge of arithmetic structure. In J. Bana & 
A. Chapman (Eds.), Mathematics Education beyond 2000 (Proceedings of 23rd annual conference of the 
Mathematics Education Research Group of Australasia, Fremantle, pp. 624-631). Sydney: MERGA. 

Yackel, E. (2001). Explanation, justification and argumentation in mathematics classrooms. Proceedings of 
the 25th annual conference of the International Group for the Psychology of Mathematics Education 
(Vo!. 1. pp. 9-24). Utrecht: PME. 

99 


